Atomic force microscopy applications in macromolecular crystallography.
نویسندگان
چکیده
Atomic force microscopy (AFM) can be applied both in situ and ex situ to study the growth of crystals from solution. The method is particularly useful for investigating the crystallization of proteins, nucleic acids and viruses because it can be carried out in the mother liquor and in a non-perturbing fashion. Interactions and transformations between various growth mechanisms can be directly visualized as a function of supersaturation, as can the incorporation of diverse impurities and the formation and propagation of defects. Because the crystals can be observed over long periods, it is also possible to obtain precise quantitative measures of the kinetic parameters for nucleation and growth. Finally, AFM has allowed us to identify a number of previously unsuspected phenomena that influence nucleation, rate of growth and the ultimate perfection of macromolecular crystals. These are all features which are important in determining the ultimate resolution and quality of a crystal's diffraction pattern.
منابع مشابه
Cryo-electron Microscopy Analysis of Structurally Heterogeneous Macromolecular Complexes
Cryo-electron microscopy (cryo-EM) has for a long time been a technique of choice for determining structure of large and flexible macromolecular complexes that were difficult to study by other experimental techniques such as X-ray crystallography or nuclear magnetic resonance. However, a fast development of instruments and software for cryo-EM in the last decade has allowed that a large range o...
متن کاملUROX 2.0: an interactive tool for fitting atomic models into electron-microscopy reconstructions
Electron microscopy of a macromolecular structure can lead to three-dimensional reconstructions with resolutions that are typically in the 30-10 A range and sometimes even beyond 10 A. Fitting atomic models of the individual components of the macromolecular structure (e.g. those obtained by X-ray crystallography or nuclear magnetic resonance) into an electron-microscopy map allows the interpret...
متن کاملDirect Visualization and Measurement of Nanoscale Macromolecular Interactions Between the Cartilage Proteoglycan Aggrecan and Related Constituents via Atomic Force Microscopy
متن کامل
A force field for virtual atom molecular mechanics of proteins.
Activities of many biological macromolecules involve large conformational transitions for which crystallography can specify atomic details of alternative end states, but the course of transitions is often beyond the reach of computations based on full-atomic potential functions. We have developed a coarse-grained force field for molecular mechanics calculations based on the virtual interactions...
متن کاملSynchrotron radiation applications to macromolecular crystallography.
Progress has been rapid in the development and application of four different types of macromolecular crystallographic experiment at synchrotron hard X-ray sources: multiwavelength anomalous diffraction; studies of crystals with very large unit cell dimensions; structure determination at atomic or near-atomic resolution; and time-resolved studies. The results illustrate the interplay between the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta crystallographica. Section D, Biological crystallography
دوره 57 Pt 8 شماره
صفحات -
تاریخ انتشار 2001